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Due to their so-called time-frequency localization properties, wavelets have
become a powerful tool in signal analysis and image processing. Typical construc-
tions of wavelets depend on the stability of the shifts of an underlying refinable
function. In this paper, we derive necessary and sufficient conditions for the stability
of the shifts of certain compactly supported refinable functions. These conditions
are in terms of the zeros of the refinement mask. Our results are actually applicable
to more general distributions which are not of function type, if we generalize the
notion of stability appropriately. We also provide a similar characterization of the
(global) linear independence of the shifts. We present several examples illustrating
our results, as well as one example in which known results on box splines are
derived using the theorems of this paper. � 1999 Academic Press

1. INTRODUCTION

In this paper we present a characterization of the stability and linear
independence of the shifts of certain compactly supported refinable func-
tions in terms of the refinement mask. Our results are applicable to a large
class of multivariate distributions which includes (but is not limited to)
tensor products and box splines.

For 1� p��, we denote by L p(Rd) the set of all measurable functions
f : Rd � C satisfying

& f &Lp :={|Rd
| f (x)| p dx=

1�p

<�.

We also denote by D$(Rd) the set of all continuous linear functionals
, : D(Rd) � C, where D(Rd) is the set of all compactly supported infinitely
differentiable functions with the standard topology (cf., e.g., [13, Chap. 6]).
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A function , # L p(Rd) is said to have l p-stable shifts if there exist positive
constants C and D such that

C &a&lp�" :
: # Zd

a(:) ,( }&:)"Lp
�D &a&lp

for all a # l p(Zd) (it is often said that , provides a Riesz basis in L p(Rd) in
this case); a compactly supported , # D$(Rd) is said to have linearly
independent shifts if the map

,V$ : CZd
� D$(Rd) : a [ :

: # Zd

a(:) ,( }&:)

is one-to-one; and a function , # L2(Rd) is said to have orthonormal shifts
if

(,, ,( }&:)) :=|
Rd

,(t) ,(t&:) dt=$: :={1,
0,

if :=0;
if : # Zd"0.

It is worth pointing out at this time that, for the shifts of a compactly
supported , # L2(Rd), orthonormality implies linear independence implies
lp-stability for 1� p�2.

All of these properties can be characterized in terms of the Fourier
transform of ,. For example, if , has orthonormal shifts, then

$:=|
Rd

,(t) ,(t&:) dt=|
Rd

|,� (|)|2 ei(:, |) d+(|)

=|
Td

:
; # Zd

|,� (|+2;?)|2 ei(:, |) d+(|),

where Td :=[0, 2?)d and (2?)d d+(|) :=d|. It follows that a compactly
supported function , # L2(Rd) has orthonormal shifts if and only if

:
; # Zd

|,� ( }+2;?)|2=1.

As this paper deals with compactly supported distributions, ,� will be used
to represent the Fourier�Laplace transform of ,, which is an entire
function defined on all of Cd for all compactly supported , # D$(Rd).

In [7], Jia and Micchelli proved that a compactly supported , # L p(Rd)
(1� p��) has l p-stable shifts if and only if the set

NR (,) :=[� # Td : ,� (�+2:?)=0 \: # Zd]
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is empty. And it was proved by Ron in [12] that a compactly supported
, # D$(Rd) has linear independent shifts if and only if the set

NC (,) :=[� # Td+iRd : ,� (�+2:?)=0 \: # Zd]

is empty.
Notice that the stability criterion, that NR (,) be empty, is independent

of p. For this reason, we will say that a compactly supported , # D$(Rd) has
suitable shifts if NR (,) is empty. If it does happen that , is in L p(Rd) for
some p, then suitability and l p-stability are equivalent. In this paper, we
investigate the suitability and linear independence of the shifts of compactly
supported refinable distributions.

A compactly supported , # D$(Rd) is said to be refinable if (, is not
identically zero and) there exists a finitely supported sequence a : Zd � C
satisfying

,= :
: # Zd

a(:) ,(2 } &:).

Equivalently, , is refinable if

,� (2|)=A(|) ,� (|) for all | # Cd, (1.1)

where

A :=
1
2d :

: # Zd

a(:) e&i( } , :).

Equation (1.1) is called the refinement equation and we refer to the
trigonometric polynomial A as the (refinement) mask. It is known (cf. [4])
that if A(0)=1, then there exists a unique distributional solution to
Eq. (1.1) with ,� (0)=1.

The characterizations given above for orthonormality, stability, and
linear independence are all in terms of the Fourier�Laplace transform ,� .
However, for refinable , it is actually more desirable to characterize these
properties in terms of the mask A. Since, as is well known, a compactly
supported refinable function , # L2(Rd) with mask A has orthonormal
shifts if and only if , has l2-stable shifts and

:
& # [0, 1]d

|A( }+&?)|2=1 on Rd,

it is sufficient to characterize suitability and linear independence (assuming
one has some way to ensure that , # L p(Rd) if necessary).
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In the univariate case (d=1), suitability and linear independence of the
shifts of a compactly supported distribution have been characterized in
terms of the mask by Jia and Wang [8]. Their arguments relied on the fact
(cf. [12]) that, for a non-zero compactly supported distribution , # D$(R),
the set NC (,) is finite. Unfortunately, this statement is invalid for
multivariate distributions.

To analyze the multivariate case, we consider distributions , whose
Fourier�Laplace transform ,� has the form

,� =,� 5 := `
! # 5

,� !(( } , !) ), (1.2)

where 5 is a finite subset of Zd"0 and, for each ! # 5, ,! is a univariate dis-
tribution of compact support. This defines a compactly supported distribu-
tion , # D$(Rd).

It is important to note that, with this definition, each ,! is univariate,
while ,� [!]=,� !(( } , !) ) defines ,[!] as an element of D$(Rd) (with support
in the line R!). We also point out that if ,! is refinable for every ! # 5, say
with mask A! , then ,5 is also refinable with mask

A5 := `
! # 5

A!(( } , !) ).

It is clear from (1.2) and the characterization of suitability (resp. linear
independence) in terms of the set NR (,) (resp. NC (,)) that, if the shifts of
,5 are suitable (resp. linearly independent), then the shifts of ,Y must be
suitable (resp. linearly independent) for every Y/5.

Now, suppose ,=,5 is of the type (1.2) and suppose Y/5 satisfies
dY :=dim span Y<d. Then ,� Y is constant in directions orthogonal to Y.
Therefore, if NR (,Y) is non-empty, say � # NR (,Y), then for any ' # Y =,
,� Y (�+'+2:?) is zero for all : # Zd; i.e., the set NR (,Y) is infinite. The
main results of this paper are based on the converse of this, namely:

Lemma 1.1. If ,=,5 # D$(Rd) is of the type (1.2), and if NR (,) is
infinite, then there is some Y/5 with dY=dim span Y<d so that NR (,Y)
is already non-empty.

It should be noted that this lemma does not require that , be refinable.
This lemma will actually lead to a complete characterization of suitabil-

ity and linear independence in terms of the mask for refinable distributions
of the type (1.2). If the shifts of ,5 are not suitable and NR (,5) is infinite,
for example, then any minimal Y/5 with NR (,Y){[ ] will satisfy dY<d
by Lemma 1.1. In this case, ,Y actually has its support in the subspace
spanned by Y, and the map ,V$ is not even bounded below when restricted
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to l2(Zd & span Y). We may then analyze those shifts of ,Y with support
in span Y. Equivalently, we may analyze the set NR (,Y) & span Y which,
since Y is minimal, must be finite. This reasoning, which will be more
rigorously presented later, works for suitability. To handle linear
independence, we use the following result due to Zhou:

Result 1.2 [15]. Suppose the compactly supported distribution , is
refinable with mask A. Then , has linearly independent shifts if and only
if , has suitable shifts and A has no ?-periodic zeros in Cd.

2. STATEMENT OF MAIN RESULTS

From this point forward we assume only that , is a compactly supported
distribution. If we refer to ,=,5 , then we are also assuming that , is of
the type (1.2). We make no assumption that , # L p(Rd), or even of function
type at all. Nor do we assume that , is necessarily refinable (if this is
needed, it will be stated explicitly). However, when we do refer to a
refinable ,, we will assume that A(0)=1 and that , is the distributional
solution to Eq. (1.1) with ,� (0)=1.

In the statement of results that follows, and throughout this paper, we
will say that the function A has a

v ?-periodic zero in Rd (resp. Cd) if there exists z # Rd (resp. Cd) such
that

A(z+:?)=0 for all : # Zd;

v contaminating zero in Rd if there exists an integer m�2 and
+ # Zd"(2m&1) Zd such that

A \2k 2+?
2m&1

+&?+=0 for all & # Zd "2Zd, k # [0, 1, 2, ...].

Equivalent definitions follow from the 2?-periodicity of A. Namely,
A has a

v ?-periodic zero in Rd if there exists x # Td such that A(x+:?)=0
for all : # [0, 1]d;

v ?-periodic zero in Cd if there exists z # Td+iRd such that A(z+:?)
=0 for all : # [0, 1]d;

v contaminating zero in Rd if there is an integer m�2 and + # [0, 1,
..., 2m&2]d"0 such that A(2k(2+?)�(2m&1)+&?)=0 for all & # [0, 1]d"0,
k # [0, 1, 2, ..., m&1].
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The following two theorems will be proved using the arguments of [8].
Note that we assume the relevant set, NR (,) or NC (,), to be finite,
whereas this assumption is not explicit in the statement of results in [8].
It is, however, implied by the fact that, for univariate ,, NC (,) is always
finite.

Theorem 2.1. Suppose , is refinable and NR (,) is finite. Then the shifts
of , are suitable if and only if the refinement mask A satisfies

(i) A has no ?-periodic zeros in Rd, and
(ii) A has no contaminating zeros in Rd.

Theorem 2.2. Suppose , is refinable and NC (,) is finite. Then the shifts
of , are linearly independent if and only if the refinement mask A satisfies

(i) A has no ?-periodic zeros in Cd; and
(ii) A has no contaminating zeros in Rd.

The assumption that NR (,) or NC (,) be finite will only be used to prove
the sufficiency. We therefore have the following

Theorem 2.3. Suppose , is refinable. If the shifts of , are suitable (resp.
linearly independent), then

(i) A has no ?-periodic zeros in Rd (resp. Cd) and
(ii) A has no contaminating zeros in Rd.

It should be noted that none of the theorems up to this point in this
section required that , be of the type (1.2).

Unfortunately, the assumption that NR (,) or NC (,) be finite in
Theorems 2.1 and 2.2 cannot be easily verified in terms of the mask.
Moreover, Example 4.1 shows that this assumption cannot be eliminated in
general. We will, however, eliminate it for distributions of the type (1.2),
under the mild conditions that dim span 5=d and A!(?)=0 for all ! # 5.

Theorem 2.4. Suppose ,=,5 of type (1.2) is refinable. Suppose
dim span 5=d and A!(?)=0 for every ! # 5. Then the shifts of , are
suitable (resp. linearly independent) if and only if the refinement mask
A :=A5 satisfies

(i) A has no ?-periodic zeros in Rd (resp. Cd), and
(ii) A has no contaminating zeros in Rd.

By assuming that 5 spans, we are merely assuming that the support of
,5 is not contained in some lower dimensional subspace. We should also
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point out that the easily verifiable assumption that A!(?) be zero is very
reasonable. For example, the proof of Theorem 2.4 from [7] shows that ,� !

vanishes on the set 2Z?"0 whenever ,� ! vanishes at infinity. If the shifts of
,! are suitable, this in turn implies that A!(?) is zero. The condition that
,� vanishes at infinity is satisfied, for example, for compactly supported
, # L p(R) with 1� p��. These observations lead immediately to the

Corollary 2.5. Suppose dim span 5=d. For each ! # 5, let ,=,! be
the solution to Eq. (1.1) with mask A=A! . If ,! # L p(R) for each ! # 5, then
the shifts of ,5 are suitable (resp. linearly independent) if and only if

(i) A5 has no ?-periodic zeros in Rd (resp. Cd),

(ii) A5 has no contaminating zeros in Rd, and

(iii) A!(?)=0 for every ! # 5.

Remark. It can be shown that if ,! # L p(R) and A!(?){0 then A5 has
a ?-periodic zero in Rd. In other words, the three conditions in
Corollary 2.5 are actually equivalent to just the first two.

As already pointed out, the necessity of the conditions in Theorem 2.4
still holds for compactly supported refinable functions not of type (1.2).
A natural question that arises is whether these conditions are still sufficient
(say under the assumption that , # L1(Rd)). It is clear from Theorem 2.2
and Result 1.2, that if a refinable function , with mask A has dependent
shifts while A has no ?-periodic or contaminating zeros, then NR (,) must
be infinite. This would be the case, for instance, if , were of the form
,� =,� 1,� 2 where ,1 , say, did not have suitable shifts and was supported in
some lower dimensional subspace. In fact, we are not aware of any
refinable function , for which NR (,) is infinite and which is not of this
form (though we make no conjecture that none exists). Under some
assumptions on ,2 , it is likely that the arguments of this paper could be
generalized to handle this (slightly) more general situation.

The proof of Theorem 2.4 will be facilitated by the following

Lemma 2.6. Suppose dim span 5=d and that A!(?)=0 for every ! # 5.
If there is a basis B/5 with det B # 2Z then A5 has a ?-periodic zero in Rd.
If some basis B/5 satisfies det B{\1 and det B � 2Z then A5 has a
contaminating zero in Rd.

Already, Lemma 2.6 together with Theorem 2.3 provides a proof of the
known

Result 2.7. Suppose dim span 5=d and that A!(?)=0 for every ! # 5.
If the shifts of ,5 are suitable, then |det B|=1 for every basis B/5.
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However, the condition |det B|=1 for all bases is not sufficient.
Example 4.2 illustrates a situation in which dim span 5=d, each ,! has
linearly independent shifts, each A! has a zero at ?, and |det B|=1 for all
bases B/5; yet the shifts of ,5 are not even suitable.

We would like to point out that, in [9], Lawton et al. provided a
characterization of orthonormality based on the 1-eigenspace of the
operator

L2(Td) � L2(Td) : f [ :
& # [0, 1]d

|A( }+&?)|2 f ( }+&?).

In [10, Sect. 4], Long and Chen provided similar criteria for the related
property of biorthogonality. Their paper also provided a multivariate
version of the so-called Cohen conditions. These results require that
, # L2(Rd). Moreover, the conditions provided can be very difficult to
check. In this paper, we present conditions which we believe to be simpler
and which are valid even for , � L2(Rd).

3. PROOF OF MAIN RESULTS

A fair portion of our analysis will involve the Smith normal form of an
integral matrix (cf. e.g., [11, pp. 26�28]):

Smith Normal Form. Every matrix Y # Zd_n has the form

Y=UDV

with U # Zd_d and V # Zn_n satisfying det U=det V=1, and D # Zd_n

satisfying Dij {0 if and only if i= j�rank Y.

More specifically, we will use the

Corollary 3.1. For any finite Y/Zd with dY=dim span Y, there
exists U # Zd_dY and V=[v( y) : y # Y]/ZdY such that

(i) Y=UV (i.e. y=Uv( y) for each y # Y ),

(ii) ZdU=ZdY.

Proof. For Y # Zd_n with Smith normal form U� D� V� , define U # Zd_dY

and V # ZdY_n by

Uij :=U� ij , 1�i�d, 1� j�dY ,

and

Vij :=D� iiV� ij , 1�i�dY , 1� j�n.
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Then, Y=UV and ZdU=ZdY. The sets Y and V of Corollary 3.1 are the
column sets of the matrices Y and V here. K

The arguments in the proof of Theorems 2.1 and 2.2 are based on
arguments given in [8]. The proof will depend on the following lemma, the
univariate version of which also appears in [8].

Lemma 3.2. Suppose the compactly supported distribution , is refinable
with mask A. Suppose further that NR (,) is finite. If A has no ?-periodic
zeros in Rd, then every element of NR (,) is of the form

z=
2+?

2m&1

for some integer m�2 and some + # [0, 1, ..., 2m&2]"0.

Proof. Let z be an element of NR (,). Then ,� (z+2;?)=0 for every
; # Zd. In particular, z is not in 2?Zd, since ,� (0)=1. By Eq. (1.1),

0=,� (z+2:?+4;?)=A(z�2+:?) ,� (z�2+:?+2;?)

for all :, ; # Zd. Our hypotheses ensure that A(z�2+:?){0 for some
: # [0, 1]d. Hence, for this :, we have z�2+:? # NR (,).

Let z0 :=z, z1 :=z�2+:?. Then z0 , z1 # NR (,) and 2z1&z0 # 2?Zd. Since
z1 is again in NR (,), we can repeat the process ad infinitum to obtain a
sequence z0 , z1 , ... satisfying zk # NR (,) and 2kzk&z0 # 2?Zd all k. Since
NR (,) is finite, we must have zk=z l for some l>k. Then z0 is equal to
2kzk+2+k? for some +k # Zd, and z0=2lzl+2+l?=2m2kzk+2+ l? for
some +l # Zd where m :=l&k. Combining these two we get z=z0=
2(2m+k&+l) ?�(2m&1)=2+?�(2m&1) where + :=2m+k&+l # Zd"(2m&1) Zd

since z � 2?Zd. In particular, m{1. K

Proof of Theorems 2.1 and 2.2. It follows immediately from Eq. (1.1)
that, if A has a ?-periodic zero in Cd, say A(z+:?)=0 for all : # Zd, then
2z # NC (,) and the shifts of , are not linearly independent. If z # Rd, then
2z # NR (,) and the shifts of , are not suitable.

Next we show that the shifts of , are not suitable (hence not linearly
independent) if A has a contaminating zero in Rd. Suppose the integer
m�2 and + # [0, 1, ..., 2m&2]d"0 satisfy

A \2k 2+?
2m&1

+&?+=0 for all k # [0, 1, 2, ...], & # Zd "2Zd. (3.1)

We claim that 2+?�(2m&1) # NR(,).
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We observe from Eq. (1.1) that

,� =,� ( } �2) A( } �2)=,� (2&n } ) `
n

j=1

A(2& j } ).

So A(z)=0 implies ,� (2 jz)=0 for every j # [1, 2, 3, ...]. Since we are assuming
(3.1), we may show that ,� (2+?�(2m&1)+2:?)=0 by finding j # [1, 2, 3, ...],
k # [0, 1, 2, ...], and & # Zd"2Zd so that

2+?
2m&1

+2:?=2 j \2k 2+?
2m&1

+&?+
or equivalently,

++(2m&1) :=2 j&1(2k+1++(2m&1) &).

Since + � (2m&1) Zd (hence ++(2m&1) :{0), we can write ++(2m&1) :
=2 j&1; with j # [1, 2, 3, ...] and ; # Zd"2Zd. Now choose n # Z so that
j�mn< j+m and define k :=mn& j, then k # [0, 1, 2, ...] and

;=2mn& j+12 j&1;&(2mn&1) ;

=2mn& j+1(++(2m&1) :)&(2m&1)(2m(n&1)+ } } } +2m+1) ;

=2k+1++(2m&1)(2k+1:&(2m(n&1)+ } } } +2m+1) ;)

=2k+1++(2m&1) &,

where & :=2k+1:&(2m(n&1)+ } } } 2m+1) ; # Zd"2Zd. This completes the
proof that the shifts of , are not suitable if A has a contaminating zero.

By Result 1.2, it is sufficient to complete the proof only for Theorem 2.1.
We assume that A has no ?-periodic zero in Rd and that NR (,) is (finite
but) not empty; and we show that A must then have a contaminating zero
in Rd. This will be simpler if we work not with NR (,), but introduce
instead the set

N+ :=NR (,)+2?Zd=[� # Rd : ,� (�+2:?)=0 \: # Zd].

We begin by showing that, for any integer m�2 and + # Zd"(2m&1) Zd,

4+?
2m&1

# N + O{
2+?

2m&1
# N+

A \ 2+?
2m&1

+&?+=0

and

for all & # Zd"2Zd.
(3.2)

257STABILITY AND INDEPENDENCE



File: 640J 325511 . By:CV . Date:27:04:99 . Time:10:10 LOP8M. V8.B. Page 01:01
Codes: 2040 Signs: 860 . Length: 45 pic 0 pts, 190 mm

Notice that, given & # Zd"2Zd, 2+?�(2m&1)+&? is not of the form
2+$?�(2m$&1) for any integer m$�2 and +$ # Zd "(2m$&1) Zd, hence by
Lemma 3.2,

2+?
2m&1

+&? � N + for any & # Zd"2Zd. (3.3)

Now fix & # Zd"2Zd. Since 4+?�(2m&1) # N +,

0=,� \ 4+?
2m&1

+2&?+4:?+=,� \ 2+?
2m&1

+&?+2:?+ A \ 2+?
2m&1

+&?+
for all : # Zd. This, together with (3.3), yields

A \ 2+?
2m&1

+&?+=0.

Since & # Zd"2Zd was arbitrary and we have assumed that A has no
?-periodic zeros, it follows that

A \ 2+?
2m&1+{0. (3.4)

Again, 4+?�(2m&1) # N+ implies that for all : # Zd,

0=,� \ 4+?
2m&1

+4:?+=,� \ 2+?
2m&1

+2:?+ A \ 2+?
2m&1+

which, together with (3.4), yields

2+?
2m&1

# N+,

proving the claim (3.2).
Now, by Lemma 3.2, if A has no ?-periodic zeros in Rd and NR (,) is

finite and nonempty, then NR (,) contains a point of the form 2+?�(2m&1)
where m�2 and + # Zd"(2m&1) Zd. In fact, since 2m+1+?�(2m&1)&
2+?�(2m&1)=2+?, we actually have

4
2m&1+?
2m&1

# N +.
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Applying (3.2) repeatedly, we see that for k # [0, 1, 2, ..., m&1],

A \2k 2+?
2m&1

+&?+=0 for all & # Zd "2Zd;

i.e., A has a contaminating zero in Rd. K

The proof of Lemma 1.1 will require the following definitions. For Y/5,
we define (Y) :=(span Y ) & 5; for X/5 with linearly independent
elements and a # RX, we define

SX, a :=[z # Rd : (z, !)=a(!) \! # X];

and for ! # 5, we define

K! :=[(z, !) : z # NR (,5)].

So, (Y) is a subset of 5, SX, a is an affine subspace of Rd of dimension
d&dX=d&*X (recall dX :=dim span X), and K! is a subset of R. Note
that if X/5 is empty, then RX is a zero-dimensional vector space consist-
ing of only one element which we call 0. In this case, the set S[ ], 0 is the
entire space Rd.

Proof of Lemma 1.1. The statement is trivial if dim span 5<d, so we
assume throughout that dim span 5=d. We also assume that NR (,Y) is
empty for any Y/5 satisfying dY<d. We then show that NR :=NR (,)
is finite. This is the case X=[ ], a=0 of the

Claim 3.3. For any X/5 with linearly independent elements and any
a # RX, the set NR & SX, a is finite.

The proof is by induction on d&dX (with a arbitrary). To begin, we
show that the claim is valid when dX=d. In this case, SX, a consists of a
single point, so of course NR & SX, a is finite.

Now suppose that X/5 consists of m linearly independent vectors with
dX=m<d and that a # RX is given. Further, assume that for any X� /5
consisting of dX� =m+1 linearly independent vectors and any a~ # RX� , the
set NR & SX� , a~ is finite. We want to show that NR & SX, a is also finite.

To this end, let z # NR & SX, a be given. Since d(X)=dX<d, we know
that NR (,(X)) is empty and there exists : # Zd so that ,� (X)(z+2:?){0.
In fact, since ,� (X) is constant on sets of the form SX, a , ,� (X)(z+2:?) is
non-zero for this : and any z in NR & SX, a .

259STABILITY AND INDEPENDENCE



File: 640J 325513 . By:CV . Date:27:04:99 . Time:10:10 LOP8M. V8.B. Page 01:01
Codes: 2837 Signs: 1401 . Length: 45 pic 0 pts, 190 mm

Now, since z is in NR , we must have ,� 5 (z+2:?)=0. So ,� !((z+2:?,
!) )=0, for some ! # 5"(X). That is, any z in NR & SX, a is actually an
element of

.
! # 5"(X)

[� # NR & SX, a : (�, !) # Z(,� !)&2?(:, !)],

where Z(,� !) :=[z # C : ,� !(z)=0]. Equivalently,

NR & SX, a / .
! # 5"(X)

.
u # U(!)

(NR & SX� ! , a~ !, u
), (3.5)

where

U(!) :=K! & (Z(,� !)&2?(:, !) ),

X� ! :=X _ [!],

a~ !, u(') :=a(') for ' # X,

and

a~ !, u(!) :=u.

Since the set NR /Td is bounded, each K! is also bounded. As each ,� !

is entire, the sets Z(,� !) are locally finite (i.e., K & Z(,� !) is finite for any
bounded K/C). We see therefore that the sets U(!) are each finite.

In (3.5), each set in the unison is finite by the induction hypothesis and
of course 5"(X) is finite. The union is thus finite, and the claim and
theorem are proved. K

In order to prove Lemma 2.6, we will need the following lemmata:

Lemma 3.4. For B # Zd_d and n # Z, if the determinant of B divides n
then the set nZd is a subset of ZdB=[:B : : # Zd].

Proof. We use the Smith normal form, B=UDV, where U and V map
Zd one-to-one onto Zd, and D is a diagonal matrix. Since det B=>d

i=1 Dii

and det B divides n, Dii divides n for all i. This implies that nZd/Zd D=
[:D : : # Zd], which in turn implies that nZd/ZdB since nZd=nZdV and
ZdB=ZdUDV=ZdDV. K

Lemma 3.5. For B # Zd_d, if &B # 2Zd for any & # Zd"2Zd then the
determinant of B is even.

Proof. We use the Smith normal form, B=U DV, where U and V map
Zd one-to-one onto Zd, and D # Zd_d is a diagonal matrix.
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Suppose we have & # Zd"2Zd and &B=&UDV # 2Zd. Then we have
&U # Zd "2Zd while &UD # 2Zd. This implies that Dii # 2Z for some i, which
proves the claim since det B=>d

i=1 Dii . K

Proof of Lemma 2.6. Suppose the basis B/5 satisfies det B # 2Z. We
work with the field Z2 :=Z�2Z, and we consider the matrix, B� # Zd_d

2 ,
obtained from B by the canonical projection of its entries onto Z2 .
Then det B # 2Z O det B� =0. So the map Zd

2 � Zd
2 : x [ xB� is not onto. I.e.,

there exists w # Zd
2 so that every : # Zd satisfies w{:~ B� = :B

t
. Since B is a

basis, we can find z # Rd so that zB
t

=w?. We see that for any : # Zd,
((z�?+:) B)t=(w+ :B

t
){0. Equivalently, for any : # Zd, some ! # B/5

satisfies (z+:?, !) # (Z"2Z) ?. Since A! is 2?-periodic and A!(?)=0, this
implies that A[!](z+:?)=A!((z+:?, !) )=0. Since : # Zd was arbitrary,
we see that A5=>! # 5 A[!] has a ?-periodic zero in Rd.

Now suppose that |det B|{1 and det B � 2Z. Fermat's Little Theorem
guarantees an integer m�2 with

2m#1 mod det B.

Since |det B|{1, the set ZdB :=[:B : : # Zd] is not all of Zd. Let : # Zd"(ZdB).
Then, since det B divides 2m&1, hence (2m&1) Zd/ZdB by Lemma 3.4,
there is some + # Zd so that (2m&1) :=+B. And since : � ZdB, we
must have + � (2m&1) Zd. So for this + # Zd"(2m&1) Zd and any
k # [0, 1, 2, ..., m&1] we have 2k(2+)�(2m&1) B=2k+1: # 2Zd. Finally, the
fact that det B is odd, along with Lemma 3.5 implies that

\2k 2+
2m&1

+&+ B # Zd"2Zd for all k # [0, 1, 2, ..., m&1], & # Zd "2Zd.

Since A!((2Z+1) ?)=[0] for each ! # B, and AB(z)=0 O A5(z)=0, we
see that A5 has a contaminating zero in Rd. K

Proof of Theorem 2.4. The necessity of conditions (i) and (ii) in this
theorem is immediate from Theorem 2.3. Moreover, it is sufficient, by
Result 1.2, to prove sufficiency for suitability alone. So assume that NR (,)
is non-empty. We must show that A has either a ?-periodic zero in Rd or
a contaminating zero in Rd.

To begin with, let Y be a minimal subset of 5 for which NR (,Y) is not
empty, i.e., fix some Y/5 satisfying NR (,Y){[ ], while NR (,X)=[ ]
whenever X %Y. Let U and V be as guaranteed by Corollary 3.1 and define

,� V := `
y # Y

,� u(( } , v( y)) ).
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This defines a compactly supported ,V # D$(RdY), which is refinable with
mask

AV := `
y # Y

Ay(( } , v( y)) ).

We claim that NR (,V) is finite. If not, then Lemma 1.1 implies the exist-
ence of V� /V satisfying dim span V� <dY=dim span V (in particular,
V� {V) such that NR (,V� ) is not empty, say ' # NR (,V� ). (3.1.ii) implies that
RdU=RdY, so there exists � # Rd such that '=�U. Now define X :=UV� ;
then we have

,� X (�+2:?)=,� V� ('+2:U?)=0

for all : # Zd. The first equality follows from (3.1.i), and the second follows
from (3.1.ii) together with the fact that ' is in NR (,V� ). But X is a proper
subset of Y, which contradicts our choice of Y as minimal.

Next we show that NR (,V) is non-empty. Suppose that � is in NR (,Y),
i.e., that ,� Y (�+2:?)=0 for all : # Zd. Let ; # ZdY be arbitrary. Then
(3.1)(ii) implies the existence of : # Zd such that :U=;. Therefore

,� V (�U+2;?)=,� Y (�+2:?)=0

by (3.1)(i). Since ; # ZdY was arbitrary, we see that NR (,V) contains �U.
So, we may apply Theorem 2.1 or 2.2 to conclude that AV has either

a ?-periodic zero in RdY or a contaminating zero in RdY. If AV contains a
?-periodic zero, say AV (w+;?)=0 for all ; # ZdY, then, as above, there
exists z # Rd such that zU=w by (3.1)(ii) and we have

AY (z+:?)=AV (w+:U?)=0

for all : # Zd, i.e., AY has a ?-periodic zero. Since AY is a factor of A, we
see that A has a ?-periodic zero in Rd in this case.

Suppose now that AV contains a contaminating zero in RdY. Let V� /V
be a basis for RdY and define Y� :=UV� . Then Y� /Y is a basis for span Y.
Since 5 spans, we can choose X/5"Y� , so that X _ Y� forms a basis for Rd.
By Lemma 2.6, we may assume without loss of generality that this basis
has determinant equal to \1. Since

(Y� X)=(U X) \V�
0

0
I+ ,

we must also have |det(U X )|=1.
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Now, let m # [2, 3, 4, ...] and ' # ZdY "(2m&1) ZdY be such that

AV \2k 2'?
2m&1

+&?+=0 for all & # ZdY"2ZdY, k # [0, 1, 2, ...].

Since |det(U X )|=1, there exists + # Zd"(2m&1) Zd such that +U=',
while (+, x) =0 for all x # X. Moreover, for any & # Zd "2Zd satisfying
&U # 2ZdY, there exists x # X for which (&, x) is odd. Therefore

AX _ Y \2k 2+?
2m&1

+&?+= `
x # X

Ax((&, x)?) AV \2k 2'?
2m&1

+&U?+=0. K

4. EXAMPLES

Example 4.1. Our first example will show that the hypothesis dim
span 5=d is necessary to arrive at the characterizations in Theorem 2.4.

We analyze the distribution , # D$(R2) defined by

, : D(R2) � C : f [ (,, f ) := 1
3 |

3

0
f (t, t) dt

or equivalently,

,� (|1 , |2)=
e&3i(|1+|2)&1
&3i(|1+|2)

for (|1 , |2) # C2. (4.1)

Equation (4.1) makes it easy to see that ,� ((?�3, ?�3)+2:?)=0 for every
: # Zd; so the shifts of , are neither linearly independent nor suitable.

This distribution is refinable and of type (1.2) with mask A5 given by

5 :=[!] :={\1
1+= and A5=A! (( } , !) ) :=

e&3i( } , !) +1
2

.

We will see that although the shifts of , are not suitable, A5 has no
?-periodic zeros in C2 and no contaminating zeros in R2. Since A!(z?) is
zero if and only if 3z is an odd integer, it will be sufficient to find &1 , &2 #
[0, 1]2"0 such that 3(&1 , !) is even while 3(&2 , !) is odd. The choice
&1=(1, 1), &2=(0, 1) will do.

We could build on this example to see that the assumption
dim span 5=d is still not sufficient without further assuming that
A!(?)=0 for all ! # 5. Let 5=[!, '] where ! and A! are as above and '
is any vector in Z2"span ! (so dim span 5=d=2). Define A'(|) :=
1
3+ 2

3 e&i|. Then A' is a trigonometric polynomial with A'(0)=1 (hence it
is the mask of some compactly supported refinable distribution ,'). The
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shifts of ,5 are not suitable (by the same reasoning as above), while it is
clear that A5 has neither ?-periodic nor contaminating zeros in R2. (Since
A' has no real zeros, the real zeros of A5 are as above.)

It is true that ,' (and in fact ,5) in this construction is not of function
type. But, as the remark following Corollary 2.5 indicates, the assumption
A! (?)=0 for all ! # 5 is not necessary when ,! are all of function type.

Example 4.2. Our next example will show that the sufficient conditions
provided in Result 2.7 are not necessary in general.

For this example, we define the univariate mask

A% :=
e&3i } +(1&2 cos %) e&2i } +(1&2 cos %) e&i } +1

4&4 cos %

=
(e&i } +1)(e&i } &e&i%)(e&i } &ei%)

4&4 cos %

for ?�3<%<?. Then A% is a trigonometric polynomial with real coefficients
which satisfies A% (0)=1. This is enough to imply the existence of a real-
valued compactly supported refinable distribution with mask A% . There is
a unique such distribution, ,% , if we insist further that ,� % (0)=1. In fact,
for ?�3<%<?, ,% is a continuous function with supp ,%=[0, 3]. The
functions ,% are plotted for %=15?�32 and %=17?�32 in Fig. 1.

The zeros of the mask A% are [?, %, 2?&%]+2Z?. From this we can
see that the shifts of ,% are linearly independent for all %{?�2. We also see
that A% (?)=0.

FIG. 1. Refinable functions with mast A% as described in Example 4.2.
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In this example, we consider the bivariate function ,5 of type (1.2) given
by

5=[!, ', `] :={\1
0+ , \0

1+ , \1
1+= ,

,!=,15?�32 , ,'=,17?�32 , and ,`=/[0, 1) ,

,� 5=,� ! (( } , !) ) ,� '(( } , ') ) ,� ` (( } , ') )

which has mask

A5 (|1 , |2)=A15?�32(|1) A17?�32(|2) \e&i(|1+|2)+1
2 + .

This defines a function , :=,5 # C1(R2). Contour lines for this , are shown
in Fig. 2.

Each of the univariate functions has linearly independent shifts.
Moreover, convolving any two also results in a function with linearly
independent shifts. Also note that every basis B/5 satisfies |det B|=1.
However, the shifts of ,5 are not even suitable, as you can see by observing
that the zero set of A5 consists of points (x1 , x2) # R2 satisfying

x1 # {?,
15?
32

,
49?
32 =+2Z? or x2 # {?,

17?
32

,
47?
32 =+2Z?

or x1+x2 # ?+2Z?.

Thus A5 has two ?-periodic zeros: A5 ((15?�32, 17?�32)+:?)=0 and
A5 ((17?�32, 15?�32)+:?)=0 for all : # Z2.

Example 4.3. We provide an example of a box spline whose mask has
a contaminating zero to generate some familiarity with contaminating
zeros.

As far as this paper is concerned, it will be sufficient to define box splines
in terms of their refinement mask. We can define a box spline M5

associated with 5/Zd"0 by the refinement equation

M� 5 (2 } )=A5M� 5 , where A5 := `
! # 5

A!(( } , !) ) and

A! :=\1+e&i }

2 +
n!
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FIG. 2. Contour lines of the function , from Example 4.2. The hexagon is the boundary of
supp ,, the maxima are barely visible near the center, and the remaining contour lines are at
equally spaced values of ,.

(along with M� 5 (0)=1). Here, n :=(n!)! # 5 # N5 is the multiplicity of the
direction set 5.

We have suppressed the dependence on the multiplicity n because the
results of this paper are in terms of the zeros of the mask A5 . It is clear
that this set is independent of n. In fact, we see that

A5 (z)=0 � (x, !) # (Z"2Z) ? for some ! # 5.

We should point out that, although our definition of box splines requires
5/Zd, the standard definition of box splines allows for arbitrary
5/Rd "0. However, box splines with non-integer directions are, in general,
not refinable. Hence we are not concerned with them here.

266 THOMAS A. HOGAN



In this example, we let d=2 and we consider ,5 :=M5 , where

5=[!, '] :={\6
5+ , \&3

5 += .

Since |det[! ']|=45{1, Result 2.7 implies that the shifts of ,5 are not
suitable. Indeed, ,5 has a contaminating zero with m=4 and +=(5, 3). In
Fig. 3 we have denoted the points 2k(2+?�(2m&1)) # Td by bullets(v). The
contaminating zero set is marked by asterisks(V). We have also displayed
particular curves ( } , !) # (Z"2Z) ? and ( } , ') # (Z"2Z) ? which cover this
contaminating zero set.

Example 4.4. Our final example involves box splines M5 for which
dim span 5 is d. We will see that the necessary conditions for suitability
provided in Result 2.7 are also sufficient for these functions. More specifi-
cally, the theorems of this paper provide a simple proof of the classic

Result 4.5 [6, 5]. For 5/Zd"0 with dim span 5=d, the shifts of any
box spline M5 associated with 5 are linearly independent if and only if

FIG. 3. Contaminating zero set with 2+?�(2m&1)=(2?�3, 2?�5) from Example 4.3.
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they are l p-stable for all 1� p�� if and only if every basis in 5 has
determinant \1.

Linear combinations of shifts of box splines appear in the first paper on
box splines, [1]. The fact that all bases B must satisfy |det B|=1 for linear
independence was proved in [2]. The sufficiency of this condition was
proved in [6] and, independently, in [5]. A more recent exposition of the
theory of box splines is provided in [3].

Result 4.5 deals only with box splines for which dim span 5=d. Under
this assumption, M5 is a compactly supported function on Rd. In fact,
M5 # L p(Rd) for 1� p��. So, suitability implies stability for the shifts of
M5 . Also, since A5 has only real zeros, stability is equivalent to linear
independence. So we only need to prove Result 4.5 with regard to
suitability.

Proof of Result 4.5. By Result 2.7, if the shifts of M5 are suitable, then
|det B|=1 for every basis B/5. Now we must prove the converse. This is
done using Theorem 2.4; i.e., we will show that if A :=A5 has either a
?-periodic zero in Rd or a contaminating zero in Rd, then there exists
a basis B/5 with |det B|{1.

We begin by assuming that A has a ?-periodic zero in Rd; i.e., we assume
the existence of z # Rd so that for all : # Zd, there exists ! # 5 for which

(z+:?, !) # (Z"2Z) ?.

We also assume that |det B|=1 for all bases B/5 and arrive at a
contradiction.

Let Y/5 be a minimal subset of 5 for which AY (z+:?)=0 for all
: # Zd. Since A!(x)=0 O x # Z? for any !, we must have (z, y) # Z? for
every y # Y. Moreover, the elements of Y must be linearly independent.
For, suppose we have a # RY"0 for which

:
y # Y

ya( y)=0.

Since Y/Zd, we may assume that a # ZY"2ZY. Suppose y~ # Y is such that
a( y~ ) is odd. Then we have

a( y~ )(z+:?, y~ ) =& :
x # Y"y~

a(x)(z+:?, x).

We see that any : for which (z+:?, y~ ) � 2Z? has the same property for
some other element of Y. So z would actually be a ?-periodic zero of AY"y~ .
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Now, Y is a subset of some basis B which, by assumption, satisfies
|det B|=1. So ZdB=Zd. In particular, we can find : # Zd so that

(:, y) ={1
0

if (z, y) # (Z"2Z) ?,
otherwise.

We see that, for this :, no y # Y satisfies (z+:?, y) # (Z"2Z) ?, and this
contradicts our assumptions.

Next, we assume that A! has a contaminating zero in Rd. I.e., we assume
the existence of m # [2, 3, ...] and + # Zd "(2m&1) Zd so that, for all & # Zd"
2Zd, k # [0, 1, 2, ...], there exists ! # 5 for which

�2k 2+?
2m&1

+&?, !� # (Z"2Z) ?.

We also assume that |det B|=1 for every basis B/5 to arrive at another
contradiction.

With Y/5 minimally satisfying the condition that AY have a contami-
nating zero in Rd, we must have (+, y) # (2m&1) Z for every y # Y, and
that the elements of Y be linearly independent.

If *Y=d, then the elements of Y actually form a basis with determinant
\1. But this is impossible, since + # Zd"(2m&1) Zd, while we must have
(+, y) # (2m&1) Z, for all y # Y. On the other hand, if *Y<d, then Y is
a proper subset of some basis B which, by assumption, satisfies |det B|=1.
We can therefore find & # Zd for which (&, y) is even for each y # Y, while
& � 2Zd. Since (2+�(2m&1), :) is an even integer for any : # Zd, we have
AY (2+?�(2m&1)+&?){0. K
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